Statistical Modeling of Spatial Extremes
نویسندگان
چکیده
The areal modeling of the extremes of a natural process such as rainfall or temperature is important in environmental statistics; for example, understanding extreme areal rainfall is crucial in flood protection. This article reviews recent progress in the statistical modeling of spatial extremes, starting with sketches of the necessary elements of extreme value statistics and geostatistics. The main types of statistical models thus far proposed, based on latent variables, on copulas and on spatial max-stable processes, are described and then are compared by application to a data set on rainfall in Switzerland. Whereas latent variable modeling allows a better fit to marginal distributions, it fits the joint distributions of extremes poorly, so appropriately-chosen copula or max-stable models seem essential for successful spatial modeling of extremes.
منابع مشابه
A Survey of Spatial Extremes: Measuring Spatial Dependence and Modeling Spatial Effects
Abstract: • We survey the current practice of analyzing spatial extreme data, which lies at the intersection of extreme value theory and geostatistics. Characterizations of multivariate max-stable distributions typically assume specific univariate marginal distributions, and their statistical applications generally require capturing the tail behavior of the margins and describing the tail depen...
متن کاملNonparametric Spatial Models for Extremes:
Estimating the probability of extreme temperature events is difficult because of limited records across time and the need to extrapolate the distributions of these events, as opposed to just the mean, to locations where observations are not available. Another related issue is the need to characterize the uncertainty in the estimated probability of extreme events at different locations. Although...
متن کاملSpatial Hierarchical Models for Extremes: Modeling Both Climate and Weather Effects
This paper and talk will discuss the applied aspects of joint work with Mathieu Ribatet, Department of Mathematics, Université Montpellier II, and Anthony Davison, Institute of Mathematics, École Polytechnique Fédérale de Lausanne. The complete paper Ribatet et al. [2010] is under review. Weather data are characterized by two types of spatial effects: climate effects that occur on a regional sc...
متن کاملspatial modeling of summer precipitation in North-west of Iran
In the present study, the main aim was the spatial evaluation summer rainfall of northwest of Iran based on30 stations in northwest of Iran during 30 years of statistical period (1985-2014). An attempt, using geo-statistical modeling by ordinary least squares (OLS) and geographically weighted regression (GWR) procedures, was also made. The results represented that the GWR model with higher S2, ...
متن کاملNonparametric Spatial Models for Extremes: Application to Extreme Temperature Data.
Estimating the probability of extreme temperature events is difficult because of limited records across time and the need to extrapolate the distributions of these events, as opposed to just the mean, to locations where observations are not available. Another related issue is the need to characterize the uncertainty in the estimated probability of extreme events at different locations. Although...
متن کامل